

Propel the Grow of Digital Health

with the New Generation of Apollo SoC

July 2023

Agenda

- About Ambiq
 - Market Overview
 - SPOT's Advantage
 - The Apollo4 Lite & Blue Lite
- Design Resources

Ambiq's Mission

To enable intelligent devices everywhere by developing the lowest-power semiconductor solutions to drive a more energy-efficient, sustainable, and data-driven world

Ambiq: Revolutionizing Low Power Processing

Defining Milestones

🕲 ambiq

Differentiated Subthreshold Power Optimization Technology (SPOT®)

Backed by 63 issued and pending patents

Unique Subthreshold Power Optimized Technology

Our Advantage	Why it Matters	Our Momentum
 3x-20x energy	 Energy	 Millions of
savings 13+ years of	consumption	different use
experience Broad	always matters Compute, sensing,	cases, huge
applications	inference, security,	volume market Shipped 200M+
across digital,	and connectivity all	devices Go-wide for diverse
analog and RF	in a small package	IoT segments

Key Advantages

Complex Design & Process Challenges

Significant Power Advantage Over Competitors

© 2023 ambiq | all rights reserved

SPOT Is a **Platform** for SoC Design

 Sub-Threshold circuits are exponentially sensitive to process/voltage/temp fluctuations

This requires a completely
 NEW way of designing
 chips from the ground up

- Design IP and know-how with >60 blocking patents
- Manufacturing IP and know-how with >200M units shipped
- Testing/validation IP and know-how with proprietary hardware/software

Large and Growing TAM

IoT Semiconductor Market

Sources: Gartner's Forecast: AI Semiconductors, Worldwide, 2020-2026; Forecast: IoT Semiconductors, Worldwide, 3Q22 Update; Semiconductor and Electronics Forecast Database, Worldwide, 3Q22 Update. Calculations performed by Ambia Micro, Inc.

Limited to specific applications: Agriculture, Appliances, Automation, Commercial Amusement, DVD Player/Recorder, Energy Management, Medical/Healthcare, Other Industrial Electronics, Safety, Security, Smart Speakers, Solid-State Lighting, Test/Measurement, Transportation and Wearables

Digital Health Market Overview

Why Lite and Blue Lite

- The 3rd variant to the award-winning Apollo4 SoC to support the growing digital health trends among diversifying IoT use cases
- Optimized with features to enable user-centric core functionalities, including
 - optimized memory for data processing
 - powerful graphics to enhance visual effects
 - secureSPOT[®] for robust security
 - a lightweight solution for compact wearables
- The Apollo4 Blue Lite offers secure Bluetooth[®] Low Energy connectivity for communication to handheld devices, host equipment, and the Cloud
- Provides the backbone for precise data mining with power efficiency
- Supports Ambiq HeartKit[™] ModelZoo via neuralSPOT

1. Up to 60 FPS

ambio

High-compute, low-power sensor processing for battery operated devices

What Sports Watch/Fitness Band Care-about

PRODUCT FORM	MARKET MOVEMENT	FEATURE IMPROVEMENT	SILICON UPGRADE
TYPICAL PRODUCT Redmi Watchx	Display	Graphic Memory size Peripherals	APOLLOY BLUELITE
	Health	Processing power Memory size	
	SpO2	Peripherals	
TYPICAL PRODUCT	New Functions	Processing power	
		Memory size Peripherals	APOLLO3 BLUE
MiBand/HBand		Higher power efficiency	

What Apollo4 Lite/Blue Lite Bring to Market on Graphic

Rich memory footprint

- 384KB TCM
- 1MB SRAM
- 2MB on-chip NVM

High throughput memory/display interface

- Overall 3x multi-bit SPI working @96MHz clock
- HSPI interface for PSRAM
- QSPI interface for display support DDR mode
- Internal high bandwidth AXI bus

High-efficiency HW GPU

- 2.5D GPU
- TSC4/6 compression supports up to 6 times the compression ratio
- Hardware anti-alias and dithering

- Support up to 500x500 resolution
- Up to 60FPS @390x390 in most scenarios
- HW anti-aliasing and dithering
- High compression ratio
- Minimize CPU load with DMA and CQ
- Ultra low power graphic blending based on SPOT

Apollo4 Lite Block Diagram

Apollo4 Blue Lite Block Diagram

Core Sub-System				Display Aud Sub-System Sub-Sy		idio System		BLE Radio					
Cortex-M4 MCU 96 / 192 MHz		ller troller				,	Co	rtex-M0		DMA			
			troller		2D/2.5D		1x	PDM	MCU 32 MHz			AES	
<u> </u>			Contro	0Q Con		GPU		interface					Baseband
I-Cache	I-Cache D-TCM 64KB 384KB		DMA	DMA (IPC/CMD		QSPI Display Interface		1	1 v 1 ² S		SRAM 64KB		RF TX/RX
64КВ								(full-duplex)		eFlash 256KB		(Wi-Fi Coexistence
Memory		Peripheral Sub-System				Security Timers/Cloc			s/Clocks				
Sub-system		2x QSPI/O	2x 8x QSPI/OSPI Master SPI/I ^T		₽ / ²(C 12-bit ADC		Secure E	Secure Boot			2x HFRC	
NVM	1v				Key Sto		age	ge		LFRC			
		QSPI/OSPI	I/HSPI	Up to 84 GPI		IO VCOMP			Crypto Ad		Timers RTC/ WDT		32 kHz XTAL
1MB SRAM	4x UAI	RT	1x SPI/ I ² C Slave		ve 1x SDIO,	1x SDIO/eMM0		RNG		HF XTAL			

Apollo4 Blue Lite – For Fitness Band

- Executes all processing functions while delivering rich graphics
- Drive 390x390 display with up to
 60fps framerate
- Embedded BLE 5.1 radio for
 Bluetooth connectivity to phone or other devices
- Higher throughput interface via
 Hex-SPI to access PSRAM
- Expanded data storage for with external Flash and eMMC card
- Multiple UART/SPI/I²C interfaces
- Up to 75 GPIOs

Apollo4 Lite – For Sports Watch

- Executes all processing functions
 while delivering rich graphics
- Drive 390x390 display with up to
 60fps framerate
- Embedded BLE 5.1 radio for
 Bluetooth connectivity
- Higher throughput interface via
 Hex-SPI to access PSRAM
- Expanded data storage interface for external Flash and eMMC card
- Multiple UART/SPI/I²C interfaces
- Up to 84 GPIOs

Apollo4 Lite – For Digital Health

apollo

- Ultra low power sensor hub with multiple I²S/SPI for personal health datamining and monitoring
 - Pulse oximeter
 - Accelerometer & gyroscope
 - Electrocardiogram
 - Body temperature
- Flexible interfaces to expand application capability with additional connectivity or processing
- Embedded Bluetooth Low Energy 5.1 for secure data transfer to smart app
- Expanded data storage interface for external Flash and eMMC card

Apollo Product Comparison

	Apollo3 Blue Plus	Apollo4 Blue Lite	Apollo4 Blue Plus		
	48MHz/96MHz	96MHz / 192MHz (turboSPOT®)	96MHz/192MHz (turboSPOT)		
Cortex-M4F	0.75MB SRAM 2MB NVM	<mark>1.4MB SRAM</mark> 2MB NVM	<mark>2.75MB SRAM</mark> 2MB NVM		
	16KB Code Cache	64KB Code Cache	64KB Code Cache		
	AHB (32-bit)	AXI (128-bit) 32x data cache buffers	AXI (128-bit) 32x data cache buffers		
	1x OSPI, 2x QSPI (up to 48MHz)	1x HexSPI, 2x OSPI (up to 96MHz) SDIO/eMMC	1x HexSPI, 2x OSPI (up to 96MHz) SDIO/eMMC, <mark>USB FS/HS</mark>		
	While Loop: 6 μA/MHz Coremark: 10.3 μA/MHz Deep Sleep (no Ret): 1.2 μA Deep Sleep (384K Ret): 3.7 μA	While Loop: 4 μA/MHz Coremark: 11 μA/MHz Deep Sleep (no Ret): 6.0 μA Deep Sleep (384K Ret): 8.2 μA	While Loop: 4 μA/MHz Coremark: 8.9 μA/MHz Deep Sleep (no Ret): 7.7 μA Deep Sleep (384K Ret): 14.1μA		
	Software Composition Only	2.5D GPU QSPI 390 x 390 resolution; 60 fps	2.5D GPU <mark>4-layer Display Controller</mark> MIPI DSI (2x) <mark>500 x 500 resolution</mark> ; 60 fps		
		Anti-aliasing, Dithering	Anti-aliasing, Dithering <mark>Vector Graphics</mark>		
	Stereo PDM (1x) I ² S Slave Voice-on-SPOT [®] (VoS [®])	Stereo PDM (<mark>1x</mark>) I ² S full duplex Voice-on-SPOT (VoS)	Stereo PDM (<mark>4x</mark>) Low power <mark>AUDADC (1x)</mark> I ² S full duplex w/ <mark>ASRC</mark> Voice-on-SPOT (VoS)		
	+3 dBm Output Power -93 dBm RF Sensitivity Bluetooth LE [®] 5.0	+6 dBm Output Power -95 dBm RF Sensitivity Bluetooth LE [®] 5.1	+6 dBm Output Power -95 dBm RF Sensitivity Bluetooth LE [®] 5.1		
	secureSPOT [®] 1.0	secureSPOT 2.0 PSA-L1	secureSPOT 2.0 PSA-L1		

Ideal Endpoint Applications

Fitness Bands Smartwatches

Cardiac Monitoring

Continuous Blood Glucose Monitoring Asset Tracking Bike Computer

Apollo4 Lite Family Development Platform

• AmbiqSuite 4.4 SDK

- No license fees for developers
- Supports GCC, Keil, and IAR
- HAL source code
- Cordio BLE Stack
- Standard ARM Cortex SWD debug interface
- AmbiqVoS SDK Q3'23

• Evaluation Hardware

- Apollo4 Lite EVB (AMAP4LEVB)
- Apollo4 Blue Lite EVB (AMA4BLEVB)
- Compatible w/Apollo4 Audio Kit (AMA4AUD)

• Developer Resources

- Ambiq Content Portal
- Ambiq Knowledge Base

Apollo4 Blue Lite AMA4B2KL-KXR Apollo4 Lite AMAP42KL-KBR

Apollo4 Blue Lite EVB

AMA4BLEVB

Apollo4 Lite EVB AMAP4LEVB

Ambiq is Your Best Partner for Innovation

© 2023 ambig | all rights reserved

(a) ambiq

Thank You!