
Apollo4 Graphics
Ultra-Low Power Apollo SoC Family
A-SOCAP4-GGNA02EN v1.0

GETTING STARTED GUIDE

Apollo4 Graphics Getting Started Guide

A-SOCAP4-GGNA02EN v1.0 2 Confidential and Proprietary

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS
CONTENT MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES.
AMBIQ MICRO MAY MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO
AND ITS SUPPLIERS RESERVE THE RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS,
IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS, PROGRAMS AND SERVICES AT ANY TIME OR TO
DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL
WARRANTIES AND CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED
WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED
UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF
AMBIQ MICRO COVERING OR RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO
WHICH THIS CONTENT RELATE OR WITH WHICH THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE
PATENTS OR OTHER INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER
THE PATENTS OR OTHER INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO
USE AMBIQ MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER
TO DESIGN OR FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN
THIS DOCUMENT. AMBIQ MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN. AMBIQ MICRO MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE
SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY
AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR INCIDENTAL DAMAGES. “TYPICAL”
PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR SPECIFICATIONS CAN AND DO
VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING
PARAMETERS, INCLUDING “TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER’S
TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR
THE RIGHTS OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS
COMPONENTS IN SYSTEMS INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS
INTENDED TO SUPPORT OR SUSTAIN LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE
AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH UNINTENDED OR UNAUTHORIZED
APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS, EMPLOYEES, SUBSIDIARIES,
AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES, AND
REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR
DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT
AMBIQ MICRO WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.

Apollo4 Graphics Getting Started Guide

A-SOCAP4-GGNA02EN v1.0 3 Confidential and Proprietary

Revision History

Reference Documents

Revision Date Description

1.0 September 7, 2021 Initial release

Document ID Description

D-API NEMA|GFX - API Library Manual

NEMA|GFX Debug Application Note

D-API NEMA|DC - API Library Manual

PG-A4-6p0 Apollo4 SoC Family Programmer's Guide

Apollo4 Graphics Getting Started Guide Table of Contents

A-SOCAP4-GGNA02EN v1.0 4 Confidential and Proprietary

Table of Contents

1. Introduction ... 8

2. Quick Start Guide ... 9
2.1 Initialization ... 9
2.2 GPU Composing Frames ... 10
2.3 DC Rendering Display ... 11

3. Portable Implementation .. 12
3.1 Interrupts Handling .. 12

3.1.1 GPU Interrupt .. 12
3.1.2 DC VSync ... 13

3.2 Graphics Memory Management .. 13

4. Graphics APIs .. 14
4.1 Platform APIs ... 14
4.2 Command Lists APIs ... 14
4.3 Binding Textures APIs .. 15
4.4 Command Graphics APIs .. 16
4.5 Blending APIs .. 17

4.5.1 Predefined Blending Modes .. 17
4.5.2 User Defined Modes ... 18
4.5.3 Additional Operations ... 18

4.6 Font APIs ... 19
4.7 Display Initialization and Timing APIs .. 19
4.8 Display Video Layers APIs ... 20
4.9 Display Refreshing APIs ... 20
4.10 DSI ULPS APIs .. 20

5. Graphics Examples ... 21

6. Additional Software Tools ... 22
6.1 NEMA|GUI-Builder ... 22
6.2 NEMA|PIX-Presso ... 23

Apollo4 Graphics Getting Started Guide Table of Contents

A-SOCAP4-GGNA02EN v1.0 5 Confidential and Proprietary

7. Graphics Troubleshooting .. 24

Apollo4 Graphics Getting Started Guide List of Tables

A-SOCAP4-GGNA02EN v1.0 6 Confidential and Proprietary

List of Tables

Table 4-1 Color Mode Descriptions .. 15
Table 4-2 Texture Slot and Usage .. 16

Apollo4 Graphics Getting Started Guide List of Figures

A-SOCAP4-GGNA02EN v1.0 7 Confidential and Proprietary

List of Figures

Figure 4-1 Predefined Blending Modes .. 17
Figure 4-2 User Defined Blending Modes .. 18
Figure 4-3 Additional Operations Example ... 18
Figure 4-4 Vector and Bitmap Fonts ... 19
Figure 6-1 NEMA|GUI-Builder ... 22
Figure 6-2 NEMA|PIX-Presso .. 23

Confidential and Proprietary 8 A-SOCAP4-GGNA02EN v1.0

SECTION

1 Introduction

The graphics subsystem in Apollo4 provides 2D/2.5D acceleration and CPU offload for a rich
graphics user interface. The integrated Graphics Process Unit (GPU) provides 2D drawing, blit
support, text rendering support, full alpha blending, image transformation with compression
schemes, and rich color formats to bring high quality graphical user interfaces. The display sub-
system provides support for interfacing to display panels. Several display interface types are
supported: SPI, QSPI, and MIPI DSI.

The AmbiqSuite SDK provides a low overhead software graphics library and APIs that interface
directly with Apollo4 graphics and display subsystems. This provides the end users a simple
and flexible tool for rapid graphical user interface (GUI) development, tailored for ultra-low
power systems. Its small memory footprint, command lists features (allowing optimal CPU-GPU
decoupling), low overhead features, and lack of any external dependencies make it an ideal API
for developing vivid graphics on ultra-low power devices.

Confidential and Proprietary 9 A-SOCAP4-GGNA02EN v1.0

SECTION

 2 Quick Start Guide

This section demonstrates the NEMA graphics API. Refer to the graphics examples in the
AmbiqSuite SDK for the implementation details of steps below, such as nemagfx_rotat-
ing_crate.

2.1 Initialization

The first thing is the GPU and display controller (DC) initialization using:

int nema_init (void)
int nemadc_init (void)

If using a MIPI DSI panel, some additional DSI initialization is needed.

uint32_t am_hal_dsi_init(void)

uint32_t
am_hal_dsi_para_config(uint8_t ui8LanesNum, uint8_t ui8DBI-
BusWidth, uint32_t ui32FreqTrim)

If using a QSPI display driven by RM67162, initialize the display panel driver:

uint32_t

am_devices_nemadc_rm67162_init(uint32_t mode, uint32_t pixel_for-
mat, uint16_t resx, uint16_t resy, uint16_t minx, uint16_t miny)

If using a MIPI DSI display driven by RM67162, initialize the display panel driver:

uint32_t

am_devices_dsi_rm67162_init(uint32_t ui32PixelFormat, uint16_t
ui16ResX, uint16_t ui16ResY, uint16_t ui16MinX, uint16_t
ui16MinY)

Apollo4 Graphics Getting Started Guide Quick Start Guide

Confidential and Proprietary 10 A-SOCAP4-GGNA02EN v1.0

2.2 GPU Composing Frames

The GPU is programmed via its configuration registers. Using Command Lists (CLs)
is more efficient than writing directly to the configuration registers. CLs are capa-
ble of drawing complicated scenes while keeping the CPU workload to a mini-
mum.

A typical routine for drawing using CL includes the following functions:

1. Create a CL and bind it.

nema_cmdlist_t cl = nema_cl_create (); // Create a new CL
nema_cl_bind_cmdlist (& cl); // Bind it

2. Set clipping rectangle.

void nema_set_clip(...)

3. Bind destination texture (frame buffer).

void nema_bind_dst_tex(...)

4. Bind source texture (if needed).

nema_bind_src_tex(…)

5. Set blending mode.

nema_set_blend_fill(…)/nema_set_blend_blit(…)

6. Draw/Fill/Blit.

nema_draw_(…)/nema_fill_(…)/nema_blit*(…)

7. Submit CL for execution and wait for its completion.

nema_cl_submit(&cl);
nema_cl_wait(&cl);

The frame buffer (destination texture) is then updated by the GPU and the informa-
tion is sent to the display.

For more details, refer to NEMA|GFX - API Library Manual Doc Part: D-API.

https://ambiqm.sharepoint.com/:b:/r/Shared%20Documents/Projects/Apollo4-RevB/General%20Availability/Final%20Assets%20%26%20Documentation/Level%203%20-%20Approval%20Required/Display%20Kit/NemaGFX_API_Manual_v1.3.6.pdf?csf=1&web=1&e=r2iZsQ

Apollo4 Graphics Getting Started Guide Quick Start Guide

Confidential and Proprietary 11 A-SOCAP4-GGNA02EN v1.0

2.3 DC Rendering Display

DC uses Layers which are visual elements stacked to compose the final displayed
image and send to the panel.

A typical routine for DC updating the display would be the following:

1. Set the DC layer.

The layers can be scaled, cropped, positioned, blended and composed on the
final display. They are completely independent to each other, therefore must
be set separately.

But in most of cases, 1 layer is enough. A nemadc_layer_t struct contains
information regarding the layer, such as resolution, stride, format, and more.
Layers are set as follows:

void nemadc_set_layer (int layer_no , nemadc_layer_t * layer)

2. Send the frame to the display panel.

void nemadc_send_frame_single(void)

Use the alternative function below if a MIPI DSI panel is used.

void dsi_send_frame_single_start(uint32_t ui32Mode)

3. Wait VSYNC for the completion of frame refreshing.

void nemadc_wait_vsync (void)

For more details, refer to NEMA|DC - API Library Manual Doc Part: D-API.

https://ambiqm.sharepoint.com/:b:/r/Shared%20Documents/Projects/Apollo4-RevB/General%20Availability/Final%20Assets%20%26%20Documentation/Level%203%20-%20Approval%20Required/Display%20Kit/NemaDC_API_Manual_v1.1.pdf?csf=1&web=1&e=zNpNtt
https://ambiqm.sharepoint.com/:b:/r/Shared%20Documents/Projects/Apollo4-RevB/General%20Availability/Final%20Assets%20%26%20Documentation/Level%203%20-%20Approval%20Required/Display%20Kit/NemaDC_API_Manual_v1.1.pdf?csf=1&web=1&e=4COlCp

Confidential and Proprietary 12 A-SOCAP4-GGNA02EN v1.0

SECTION

3 Portable Implementation

The Graphics APIs are compatible among different Apollo4 SoCs and AmbiqSuite SDKs. How-
ever, each implementation of these APIs may be different and is released in the binary form
with corresponding backend configurations.

For Apollo4 RevB, the backend configurations are at:
third_party/ThinkSi/config/nemagfx_apollo4b

Developers can further adjust these configurations for their RTOS and software architecture.

3.1 Interrupts Handling

3.1.1 GPU Interrupt

The users UI task calls nema_cl_wait to wait for GPU to finish current operation.
GPU notifies CPU by an interrupt when the current graphics operation completes.
Its interrupt handler should:

De-assert hardware interrupt
Wake/notify tasks waiting for interrupt

As the UI task is suspended at waiting CL (nema_cl_wait) by the nema_wait_irq(),
the AmbiqSuite SDK users need to implement waking/notifying UI task for their
RTOS in the interrupt handler prvNemaInterruptHandler in nema_hal.c.

Apollo4 Graphics Getting Started Guide Portable Implementation

Confidential and Proprietary 13 A-SOCAP4-GGNA02EN v1.0

3.1.2 DC VSync

The nemadc_wait_vsync function waits for a vsync signal to avoid screen tearing
or visual artifacts. The UI task (or display rendering task) is suspended at waiting
VSync after requesting DC refreshing the display.

When DC VSync interrupt arrives, the current refresh cycle finishes. Its interrupt
handler should:

De-assert hardware interrupt
Wake/notify tasks waiting for interrupt

The AmbiqSuite SDK users need to implement waking/notifying action for their
RTOS in the interrupt handler prvVsyncInterruptHandler in nema_dc_hal.c.

3.2 Graphics Memory Management

The graphics memory for the Apollo4 resides in shared SRAM (SSRAM). The mem-
ory pool of the graphics memory is defined in nema_hal.c as the following.

static AM_SHARED_RW uint64_t tsi_buffer[VMEM_SIZE/8];

The size VMEM_SIZE can be adjusted based on application need.

Confidential and Proprietary 14 A-SOCAP4-GGNA02EN v1.0

SECTION

 4 Graphics APIs

The graphics APIs include a set of higher level calls, forming a complete standalone Graphics
API for applications in systems where no other APIs are needed. This API is able to carry out
draw operations from as simple as lines, triangles, and quadrilaterals to more complex ones like
blitting and perspective correct texture mapping. They can also be used as a back-end to exist-
ing third-party GUI solutions.

4.1 Platform APIs

GPU register access:
– nema_reg_read: read GPU registers
– nema_reg_write: write GPU registers

DC register access:
– nemadc_reg_read: read DC registers
– nemadc_reg_write: write DC registers

Graphics buffers management:
– nema_buffer_create/destroy()

4.2 Command Lists APIs

A Command List (CL) is considered amongst the most important features of the
NEMA® series.

nema_cl_create allocates and initializes a new CL

nema_cl_bind sets the referred CL as active. From that point on, each subse-
quent drawing call will incrementally be incorporated in the active CL. At any
time, all drawing operations should be called when there is a bound CL.

Apollo4 Graphics Getting Started Guide Graphics APIs

Confidential and Proprietary 15 A-SOCAP4-GGNA02EN v1.0

nema_cl_unbind unbinds the currently bound CL. The CL shall be unbound
before submission.

nema_cl_submit submits the referred CL for execution. When a CL is submit-
ted for execution, it should never be altered until it finishes execution. Writing
in such a CL results in undefined behavior. If this CL is currently the one that is
bound, this call unbinds it.

nema_cl_wait blocks till the CL completes.

4.3 Binding Textures APIs

The color modes listed in Table 4-1 can be used for both source and destination
textures.

The NEMA® Graphics Core is a programmable very long instruction word (VLIW)
processor, which allows rapid calculations between colors. It is programmed

Table 4-1: Color Mode Descriptions

Color Mode Description

RGBX8888 32-bit color with no transparency

RGBA8888 32-bit color with transparency

XRGB8888 32-bit color with no transparency

ARGB8888 32-bit color with transparency

BGRA8888 32-bit color with transparency

BGRX8888 32-bit color with transparency

RGBA5650 16-bit color with no transparency

RGBA5551 16-bit with 1-bit transparency

RGBA4444 16-bit color with transparency

RGBA3320 8-bit color with no transparency

L8 8-bit gray scale (luminance) color

A8 8-bit translucent color

L2 2-bit grayscale (luminance) color

L4 4-bit grayscale (luminance) color

BW1 1-bit color (black or white)

UYVY UYVY color

TSC™4 4-bit proprietary compressed

YUV YUV

Z24_8 32-bit (24+4) depth and stencil

Z16 16-bit depth

Apollo4 Graphics Getting Started Guide Graphics APIs

Confidential and Proprietary 16 A-SOCAP4-GGNA02EN v1.0

through instructions in binary form, called Shaders. NEMA|p incorporates four tex-
ture slots, allowing four textures to be bound simultaneously. Accordingly, the
hardware allows a single Shader to read from and/or write to four different textures
as seen in Table 4-2.

nema_bind_dst_tex binds a texture to serve as destination. Every drawing
operation should have an effect on a given destination texture. The texture’s
attributes (GPU address, width, height, format, and stride) are written inside the
bound CL. Each subsequent drawing operation will have an effect on this desti-
nation texture.

nema_bind_src_tex binds a texture to be used as foreground. Most common
graphics operations include some kind of image blitting (copying), like draw-
ing a background image, GUI icons or even font rendering. Besides the tex-
ture's attributes, It has one extra argument, NEMA_tex_mode_t mode, that
determines how to read a texture (point/bilinear sampling, wrapping mode
etc).

nema_bind_src2_tex binds a background texture to NEMA_TEX2 slot. This is
needed when the Blending Mode to be used does not use the destination tex-
ture (NEMA_TEX0) as background texture at the blending operation.

4.4 Command Graphics APIs

Drawing APIs can draw geometry primitives. Based on these primitives, the Pro-
grammable Core can do simple operations such as filling and blitting.

Filling APIs fills a primitive with a color.

Blitting APIs copy source texture to destination texture to fit a specified shape
with rotation or not.

Clipping APIs set the drawing area's clipping rectangle.

The Programmable Core can do more advanced ones such as blurring and edge
detection.

Table 4-2: Texture Slot and Usage

Texture Slot Texture Usage

NEMA_TEX0 Destination/Background Texture

NEMA_TEX1 Foreground Texture

NEMA_TEX2 Background Texture

NEMA_TEX3 Depth Buffer

Apollo4 Graphics Getting Started Guide Graphics APIs

Confidential and Proprietary 17 A-SOCAP4-GGNA02EN v1.0

4.5 Blending APIs

Blending refers to a convex combination of two colors – a translucent source (fore-
ground) and a destination (background), allowing transparency effects. The basic
blending algorithms define a set of mathematical operations for the Color chan-
nels (RGB) and the Alpha (transparency) channel of a fragment. The blending pro-
cess is essential for rendering fonts and/or creating GUIs. In the NEMA graphics
pipeline, blending is carried out in the Graphics Core.

Blending APIs employs pre-assembled commands to create a powerful set of
blending algorithms in-steading of running a compiler for creating Shaders.

nema_set_blend_fill refers to blending when filling a primitive with a color.

nema_set_blend_blit refers to blending when blitting a texture.

4.5.1 Predefined Blending Modes

Figure 4-1: Predefined Blending Modes

Apollo4 Graphics Getting Started Guide Graphics APIs

Confidential and Proprietary 18 A-SOCAP4-GGNA02EN v1.0

4.5.2 User Defined Modes

Figure 4-2: User Defined Blending Modes

4.5.3 Additional Operations

Figure 4-3: Additional Operations Example

Apollo4 Graphics Getting Started Guide Graphics APIs

Confidential and Proprietary 19 A-SOCAP4-GGNA02EN v1.0

4.6 Font APIs

Drawing text on the screen is an important element of any Graphical User Inter-
face. To draw a string, you will need a Typeface, the text to be drawn and some
attributes on how the text is to be displayed. Typefaces are sourced in TrueType
(TTF) file type, which contains scalable representations of typefaces described as
vector curves. Scalable fonts are converted to raster fonts (bitmap fonts) by rasteri-
zation to a particular size and format. Raster fonts are drawn on the screen as a
series of images with each letter drawn after the other using the correct letter
width. To facilitate this process, NEMA|GFX Library handles text display and align-
ment using special functions.

Figure 4-4: Vector and Bitmap Fonts

This first step is to convert a TrueType font to Bitmap font offline by NemaGFX_Fon-
tUtil tool.

The nema_bind_font is to bind the data structure of a typeface and nema_draw_-
text is to draw the text.

4.7 Display Initialization and Timing APIs

nemadc_init initializes the NEMA|dc and retrieves its configuration by getting
access to its register file.

nemadc_set_bgcolor sets the background color once the DC is initialized.
nemadc_timing set different timing parameters include setting display resolu-

tion and blanking the front and back porch.

Note: The DSI interface must be initialized if using MIPI DSI mode.

am_hal_dsi_init initializes the DSI interface.
am_hal_dsi_para_config configures the DSI interface. We recommend 1 lane,

16-bit DBI bus and 240MHz mode (ui8LanesNum = 1, ui8DbiWidth = 16, ui32-
FreqTrim = 10).

https://ambiqmicro.atlassian.net/wiki/spaces/Falcon/pages/edit/665584138?draftId=665551412&draftShareId=21b167cf-090c-443e-be8e-0d7804eed556&
https://ambiqmicro.atlassian.net/wiki/spaces/Falcon/pages/edit/665584138?draftId=665551412&draftShareId=21b167cf-090c-443e-be8e-0d7804eed556&
https://ambiqmicro.atlassian.net/wiki/spaces/Falcon/pages/edit/665584138?draftId=665551412&draftShareId=21b167cf-090c-443e-be8e-0d7804eed556&
https://ambiqmicro.atlassian.net/wiki/spaces/Falcon/pages/edit/665584138?draftId=665551412&draftShareId=21b167cf-090c-443e-be8e-0d7804eed556&

Apollo4 Graphics Getting Started Guide Graphics APIs

Confidential and Proprietary 20 A-SOCAP4-GGNA02EN v1.0

4.8 Display Video Layers APIs

NEMA|dc400 supports up to four layers. These layers can be scaled, clipped, posi-
tioned, and composed on the final display. They are completely independent to
each other, therefore must be set separately.

nemadc_layer_enable and nemadc_layer_disable enable and disable layers
at runtime.

nemadc_set_layer sets a layer's information such as resolution, stride, format.
nemadc_set_layer_addr sets its physical address.
Besides the above, NEMA|dc implements a programmable global and per-layer

Gamma Look Up Table (LUT) for gamma correction. Gamma LUT consists of a
3x256x8 memory array that holds the RGB values for each of the 256 colors in
the palette. In order to program it, NEMA|DC-API implements getter and setter
calls for both the global and the per layer Gamma LUT.

4.9 Display Refreshing APIs

The nemadc_send_frame_single() sends the frame to the display panel. If you’re
using DSI interface, use dsi_send_frame_single(NEMADC_OUTP_OFF) instead.

The nemadc_wait_vsync waits for Vertical Synchronization (VSync) which means
the DC is done with the frame refresh. While the DC is busy scanning the current
frame from memory, front frame should never be altered. Any modifications to the
layer information or address should be done after VSync.

4.10 DSI ULPS APIs

Two pairs of APIs for DSI ultra-low power state (ULPS) mode are provided:

am_hal_dsi_ulps_entry/am_hal_dsi_ulps_exit enter/exit ULPS mode.
am_hal_dsi_napping/am_hal_dsi_wakeup enter/exit ULPS and power off/on

the DSI hardware to save more power.

For function details, refer to the Apollo4 SoC Family Programmer's Guide Doc Part:
PG-A4-6p0.

Confidential and Proprietary 21 A-SOCAP4-GGNA02EN v1.0

SECTION

 5 Graphics Examples

See Read Me file in the latest AmbiqSuite SDK for more information.

Confidential and Proprietary 22 A-SOCAP4-GGNA02EN v1.0

SECTION

 6 Additional Software Tools

6.1 NEMA|GUI-Builder

NEMA|GUI-Builder is a Rapid GUI Design Toolkit that allows drag-and-drop creation
of advanced GUI. It is a simple and flexible tool for rapid graphical user interfaces
development.

Figure 6-1: NEMA|GUI-Builder

Apollo4 Graphics Getting Started Guide Additional Software Tools

Confidential and Proprietary 23 A-SOCAP4-GGNA02EN v1.0

6.2 NEMA|PIX-Presso
Figure 6-2: NEMA|PIX-Presso

NEMA|PIX-Presso is a utility for converting images to formats suitable for low
power embedded devices. The purpose of the Converter is to act as an easy to use
companion for graphics developers in order to adapt images to applications
requirements.

Confidential and Proprietary 24 A-SOCAP4-GGNA02EN v1.0

SECTION

 7 Graphics Troubleshooting

Refer to NEMA|GFX Debug Application Note v1.0.

© 2021 Ambiq Micro, Inc. All rights reserved.
6500 River Place Boulevard, Building 7, Suite 200, Austin, TX 78730

www.ambiq.com
sales@ambiq.com
+1 (512) 879-2850

A-SOCAP4-GGNA02EN v1.0
September 2021

	Introduction
	Quick Start Guide
	2.1 Initialization
	2.2 GPU Composing Frames

	Portable Implementation
	3.1 Interrupts Handling
	3.1.1 GPU Interrupt

	3.2 Graphics Memory Management

	Graphics APIs
	4.1 Platform APIs
	4.2 Command Lists APIs
	4.3 Binding Textures APIs
	4.4 Command Graphics APIs
	4.5 Blending APIs
	4.5.1 Predefined Blending Modes
	4.5.2 User Defined Modes
	4.5.3 Additional Operations

	4.6 Font APIs
	4.7 Display Initialization and Timing APIs
	4.8 Display Video Layers APIs
	4.9 Display Refreshing APIs
	4.10 DSI ULPS APIs

	Graphics Examples
	Additional Software Tools
	6.1 NEMA|GUI-Builder
	6.2 NEMA|PIX-Presso

	Graphics Troubleshooting

