Table of Content

1. Introduction... 3
2. Documentation Revision History .. 3
3. Overview .. 4
4. Updated to Windows PATH .. 5
5. J-Link Tools .. 6
7. IAR Embedded Workbench .. 12
8. Atollic TrueSTUDIO .. 13
9. Eclipse/GCC .. 15
1. Introduction

This guide is designed to step a user through the first few screens for the J-Link tools and for each of the IDEs in order to provide quick success with the new look and feel of the Ambiq Suite.

2. Documentation Revision History

<table>
<thead>
<tr>
<th>Rev #</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>May 2017</td>
<td>Document initial public release</td>
</tr>
<tr>
<td>1.10</td>
<td>Jun 2017</td>
<td>General reformatting/clean-up</td>
</tr>
</tbody>
</table>
3. Overview

This version of the Ambiq Suite SDK is designed to target a family of Arduino compatible Evaluation Boards known as apollo1_evb and apollo2_evb. These boards are designed to be widely compatible with the Arduino ecosystem of reference shield boards. In addition, they include a SEGGER J-Link debugger on-board so there is no need for an external debugger.

This version supports example projects for the following toolchains:

- IAR Embedded Workbench 8.11.1
- Keil uVision 5.23
- Atollic TrueSTUDIO 7.1.2
- GCC 5.3.1

Project templates are released for each toolchain. They are found in the subdirectories inside each example project directory.
4. Updated to Windows PATH

Once the tools are installed, be sure to update the Windows PATH environment variable to include the following additional paths (optional based on toolchain):

- C:\Program Files (x86)\Atollic\TrueSTUDIO for ARM 7.1.2\ARMTools\arm-atollic-eabi\bin
- C:\Program Files (x86)\Atollic\TrueSTUDIO for ARM 7.1.2\ARMTools\bin
- C:\Program Files (x86)\IAR Systems\Embedded Workbench 8.0\common\bin
- C:\Keil_v5\UV4
5. **J-Link Tools**

The J-Link tools of interest are the J-Flash Lite and the J-Link SWO Viewer. J-Flash is used to load pre-compiled binaries into the device flash. J-Link SWO Viewer is used to see the resulting application output.
When J-Flash Lite is launched it may require configuration to the following (AMAPH1KK-KBR and speed of 1000 or 1MHz).
The J-Flash program itself just requires navigating to the proper directory (e.g. C:\AmbiqMicro\AmbiqSuite\boards\apollo2_evb\examples\clkout\iar\bin\hello_world.bin) and selecting Program Device. The result should look as follows:

![J-Flash program output](image)

Next, start the J-Link SWO Viewer. Configuration is also required as follows:
Note: Make sure the TRACECLK is set to 1000 or 1MHz.

Finally, press the SYSTEM RESET button on the EVB and the program should run, displaying the following:

```
>>>>>> CLKOUT to LED Example
Clocks an LED about once a second based on the CLKOUT signal.
```

```
Device: AMAPH1KK-KBR  CPUFreq: 1000 kHz  SWOFreq: 1000 kHz  98 bytes
```
Some of the examples require output on the UART0 which is also routed through the SEGGER debug interface. The UART port is called “JLink CDC UART Port” and the settings for using the UART are as follows:

![Tera Term: Serial port setup](image)

Also note that it may be necessary to change the settings for the EOL to Line-Feed similar to this:

![Tera Term: Terminal setup](image)
6. Keil µVision MDK Development Environment

The Keil MDK projects are set up to run the SWO output through the Debug (printf) Viewer. This can be brought up by selecting View->Serial Windows->Debug (printf) Viewer. The output appears as follows:
7. IAR Embedded Workbench

The IAR project can be selected inside the appropriate subdirectory by double-clicking on the desired IAR IDE Workspace file. The project may be rebuilt as desired. When the debugger is launched for the first time in the project, the following message is displayed:

Please enter the target CPU frequency or select a device for automatic CPU frequency detection. Trace clock is usually CPU clock. On some CPUs trace clock may have a different source.

Device: AMAPH1KK-KBR
TRACECLK [kHz]: 1000

Note: The J-Link SWO Viewer has an interaction with the IAR Embedded Workbench such that the sequence of terminating a debug session vs. shutting down the J-Link SWO Viewer matters. The proper order to avoid this problem is to first terminate the debug session followed by shutting down the Viewer.

The output should be displayed as follows:

Note: The J-Link SWO Viewer has an interaction with the IAR Embedded Workbench such that the sequence of terminating a debug session vs. shutting down the J-Link SWO Viewer matters. The proper order to avoid this problem is to first terminate the debug session followed by shutting down the Viewer.

The output should be displayed as follows:
8. Atollic TrueSTUDIO

Launch the Atollic TrueSTUDIO and set up the workspace in C:\AmbiqMicro\AmbiqSuite\boards.

Wait for the Upgrade windows to finish (5 seconds) and close the window.

Choose the File->Import->General->Existing Projects into Workspace.

Click Browse, then navigate to the /boards/<target> directory of interest (e.g., /boards/apollo2_evb).

Click Finish to select all the projects, or de-select the unwanted projects.

The Project Explorer should appear as below:
Select the clkout_gcc project. Build the project. Select debug. The debugger project should appear as follows:

![Debugger Project Screenshot]

Note: The J-Link SWO Viewer has an interaction with the TrueSTUDIO such that the sequence of terminating a debug session vs. shutting down the J-Link SWO Viewer matters. The proper order to avoid this problem is to first terminate the debug session followed by shutting down the Viewer.
9. Eclipse/GCC

Note: The Eclipse/GCC environment is not operational due to an unforeseen interaction between the IDE and the J-Link GDB Server which has yet to be resolved.

The Eclipse environment is packaged into an Ambiq-Tools installer which provides for the installation of the required Java run-time environment, SEGGER J-Link tools, ARM GCC cross-compiler toolchain, and the GNU Arm Eclipse build tools, as follows:

Follow the installation steps to get started with the Eclipse environment. Once the tools are installed, the first step is to create a new workspace as follows:
After the standard Eclipse Welcome screen, the user may Import all the apollo2_evb projects by selecting "Import", then General->Existing Projects into Workspace, then Browse, OK, and Finished. This should create a project screen that looks like this:

Next, select the desired project and Clean/Build the project.
Contact Information

Address
Ambiq Micro, Inc.
6500 River Place Blvd.
Building 7, Suite 200
Austin, TX 78730

Phone
+1 (512) 879-2850

Website
http://www.ambiqmicro.com

General Information
info@ambiqmicro.com

Sales
sales@ambiqmicro.com

Technical Support
support@ambiqmicro.com

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS CONTENT MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES. AMBIQ MICRO MAY MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO AND ITS SUPPLIERS RESERVE THE RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS, IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS, PROGRAMS AND SERVICES AT ANY TIME OR TO DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF AMBIQ MICRO COVERING OR RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO WHICH THIS CONTENT RELATE OR WITH WHICH THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE PATENTS OR OTHER INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER THE PATENTS OR OTHER INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO USE AMBIQ MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER TO DESIGN OR FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN THIS DOCUMENT. AMBIQ MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN. AMBIQ MICRO MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR INCIDENTAL DAMAGES, "TYPICAL" PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR SPECIFICATIONS CAN AND DO VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING PARAMETERS, INCLUDING "TYPICALS" MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER’S TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR THE RIGHTS OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS COMPONENTS IN SYSTEMS INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH UNINTENDED OR UNAUTHORIZED APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS, EMPLOYEES, SUBSIDIARIES, AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES, AND REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT AMBIQ MICRO WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.